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INTRODUCTION With established applications of next-generation sequencing in in-
herited diseases and oncology, clinical laboratories are evaluating the use of metag-
enomics for identification of infectious agents directly from patient samples, to aid
in the diagnosis of infections. Metagenomic next-generation sequencing for infec-
tious diseases promises an unbiased approach to detection of microbes that
does not depend on growth in culture or the targeting of specific pathogens. How-
ever, the issues of contamination, interpretation of results, selection of databases
used for analysis, and prediction of antimicrobial susceptibilities from sequencing
data remain challenges. In this Point-Counterpoint, Steve Miller and Charles Chiu dis-
cuss the pros of using direct metagenomic sequencing, while Kyle Rodino and Me-
lissa Miller argue for the use of caution.
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POINT

The fundamental role of the clinical microbiology laboratory is to detect, to identify,
and to characterize pathogens that cause infections in patients, to guide patient

management. Over the years, the methods in use have changed dramatically and now
include a variety of culture-based approaches, visualization by microscopy, antigen
detection, serological methods, and molecular detection. Each of these methods has its
strengths and weaknesses and detects a defined spectrum of organisms that are
potentially able to be cultivated and/or detected. Improvements to these microbiolog-
ical assays, such as enhanced culture media and multiplex PCR syndromic panels, have
expanded the range of organisms detectable by the laboratory. Along the way, clinical
microbiologists have had to adapt their techniques and understand the benefits and
limitations of new technologies in order to provide the most accurate information to
guide treatment decisions.

The advent of high-throughput sequencing methods, known as next-generation
sequencing (NGS), allows the simultaneous characterization of millions of individual
DNA fragments (or cDNA fragments from RNA), facilitating genome assembly and
metagenomic analysis. The ability to broadly detect all classes of organisms directly
from patient samples is the major advantage of metagenomic NGS (mNGS) methods
over targeted methods such as multiplex PCR panels. However, significant concerns
exist regarding the performance, validity, and clinical significance of the organisms
detected using mNGS. These substantial challenges need to be addressed during the
clinical development of mNGS assays for pathogen detection. In our experience, these
challenges can be overcome if the laboratory is willing to commit the needed resources
and has the appropriate expertise, making it feasible for clinical laboratories to perform
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mNGS for patient testing (1). Furthermore, the clinical benefits of mNGS patient testing
in facilitating the diagnosis of neurological infections and informing treatment deci-
sions have already been demonstrated in a prospective, multisite, diagnostic trial (2). In
that study of 204 patients with undiagnosed meningitis, encephalitis, and/or myelitis,
13 (22%) of 58 infectious cases were diagnosed by mNGS testing alone, and actionable
clinical management and treatment decisions were made on the basis of mNGS results
in more than one-half of those cases. The broad applicability of mNGS methods in
research laboratories across a variety of infectious syndromes and sample types has
also been illustrated in a growing number of case reports and small case series (3).
Laboratories have continued to develop and to validate mNGS assays to address a
variety of infectious disease syndromes, such as sepsis and pneumonia, demonstrating
high analytical sensitivity and detection of more organisms thought to be pathogenic
than are detected by conventional methods (4, 5).

Reference and commercial laboratories are now offering mNGS assays in laborato-
ries certified in accordance with the CLIA program, for patient diagnosis using selected
sample types. There appears to be substantial demand from providers and patients for
mNGS testing, likely based on the hope of uncovering previously undiagnosed infec-
tious disease. In order to support the use of mNGS testing, analytical and clinical
validation studies are needed. Validation of an unbiased mNGS assay is a challenging
task, since all organism species and subtypes are potentially detectable. This also poses
regulatory challenges, as it would be impractical to obtain and to test more than a
handful of cases for each infectious organism for purposes of validation. Our solution
has been to adopt a “representative organism” approach, using individual species to
serve as models for detection of other pathogens within that category (e.g., DNA
viruses, RNA viruses, Gram-negative bacteria, Gram-positive bacteria, yeasts, and molds)
(1), with the expectation that similar organism types can be expected to behave
similarly in the assay. A list of detected species, with the findings confirmed by
alternative laboratory testing, can be maintained and expanded over time to establish
the spectrum of organisms that can be reliably tested for and reported by the mNGS
assay. A model for this approach may be the clinical validation of matrix-assisted laser
desorption ionization–time of flight mass spectrometry-based assays for bacterial
identification, for which reference databases of reportable organisms may be expanded
with additional confirmed strains over time.

A significant potential limitation to the use of mNGS assays for infectious disease
diagnostics is the possibility of false-positive results due to contamination. This issue is
not restricted to mNGS testing; in fact, microbiology laboratories are very familiar with
contamination, especially for culture-based and PCR assays, and have developed
specific protocols to deal with contamination events. Sources of “contamination” in
mNGS results include detection of normal human body flora or background contami-
nating organisms in laboratory reagents or the environment, as well as bioinformatic
analysis or database errors, such as misannotations, that can lead to organism misiden-
tification. A salient example is the discovery of xenotropic murine leukemia virus-
related virus (XMRV) and its initial apparent association with chronic fatigue syndrome
(6). Although XMRV was later shown to be a laboratory-derived recombinant virus not
present in the human population and the association with chronic fatigue syndrome
was disproven, there was emerging demand for clinical testing and even treatment
decision-making on the basis of XMRV status. However, we have found that risk
mitigation strategies can be effective in avoiding misinterpretation of mNGS results due
to contamination; strategies include (i) addition of interpretive notes based on guid-
ance from expert laboratory physicians, (ii) confirmation of organisms newly identified
by mNGS using alternative methods, (iii) implementation of a contamination-
monitoring strategy, such as a dedicated contaminant reference database, and (iv)
institution of a real-time teleconference hosted by experienced laboratory directors and
subspecialist physicians (clinical microbial sequencing board) to discuss results in
clinical context with treating physicians (2). Ultimately, implementation of these strat-
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egies is the responsibility of the clinical laboratory providing mNGS testing, to ensure
that mNGS results are used appropriately to guide patient management and care.

With respect to the adoption of mNGS testing in clinical laboratories, the guidelines
and standards for clinical NGS testing that were initially developed for oncology and
inherited disease applications (7, 8) have been adapted to infectious disease diagnostic
performance evaluation (9). Conceptually, mNGS assays for infectious diseases are
similar to oncological and noninvasive prenatal testing NGS assays, which are currently
FDA approved and in widespread use, in their ability to detect unlimited numbers of
sequence variants, and sample-processing steps in generating and analyzing sequence
data overlap significantly. Thus, we may be able to leverage the requirements for
testing and reporting of results for clinical mNGS assays that have already been
established by our colleagues in other fields of medicine.

Quality control (QC) for mNGS assays is critical to ensure accurate performance.
Because these are complex multistep tests, several QC metrics are required, including
sample controls, external controls, internal controls, library quality metrics, sequencing
quality metrics, and contamination controls. Each of these can be defined by the
laboratory with acceptable criteria to ensure that sample quality and run quality are
adequate and errors have not occurred during the processing steps. Although complex,
the establishment and monitoring of robust mNGS QC metrics have been successfully
adapted to the clinical microbiology laboratory setting (1, 10).

Analysis of mNGS data relies on the ability of bioinformatic pipelines to accurately
classify sequence reads using established databases. Several bioinformatic pipelines
have been developed for metagenomic analysis (11). Methods to filter out database
errors and inaccurate sequence matches to avoid inadvertent misclassification are often
necessary, especially when noncurated databases are used. Such methods include
computational host subtraction, masking or removal of known errors, taxonomic
classification, and filtering of sequence reads to ensure accuracy using alternative
alignment programs. Another challenge is that application and validation of bioinfor-
matic tools for mNGS analysis generally require specialized computational expertise.
However, these challenges have been successfully addressed in the field of metag-
enomics with the development of easy-to-use, automated software with graphical user
interfaces, including platforms such as SURPI�, Taxonomer, CosmosID, and OneCodex.
In addition, the recent availability of databases that have been extensively curated for
accuracy, such as FDA-ARGOS (12), has been useful in ensuring that mNGS results are
reliable and correct.

The interpretation of mNGS results in clinical context is a key part of the use of
MNGS testing in patient management. An advantage of this unbiased approach is the
ability to diagnose rare infections, such as hepatitis E virus-associated meningoenceph-
alitis (13). From a public health perspective, mNGS testing can provide evidence of
newly emerging or reemerging pathogens. For example, our clinical mNGS testing of
cerebrospinal fluid resulted in identification of the first human case of St. Louis
encephalitis virus in California since 1986 (14). Unusual organism detections such as this
can be reported to public health agencies, which may be able to assist in follow-up
confirmatory testing.

Studies regarding the clinical utility and cost-effectiveness of mNGS assays for
pathogen detection are lacking, making this area one in need of further investigation.
While mNGS testing is expensive, relative to most traditional microbiological tests, the
incremental costs of testing are minimal, compared to the costs of intensive care unit
stays or invasive diagnostic biopsy procedures or even relative to the myriad diagnostic
tests that are ordered for complex cases. Thus, if even a small percentage of mNGS test
results demonstrate a causative pathogen, with effects on subsequent patient care,
substantial cost savings for health systems overall are likely. Since mNGS testing for
infectious disease diagnosis lacks a specific CPT code, reimbursement for direct testing
costs is limited; therefore, the cost impact is best seen in the context of all patient
management costs until further cost-benefit data are available to guide reimbursement
decisions.
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The sequencing data provided by mNGS may be able to provide clinically useful
information beyond mere identification of the presence or absence of a potential
pathogen. mNGS data have been leveraged to classify infections on the basis of host
response, to characterize antimicrobial resistance, and to genotype detected pathogens
for infection control and public health purposes. While negative results for typical
diagnostic tests can be used to exclude the possibility of infection only for the agents
targeted, negative pan-pathogen mNGS results may indicate a lower likelihood of an
infectious etiology, hence being potentially useful as “rule-out” results (although
indirect tests such as serological assays may also be needed). The absence of detectable
pathogen nucleic acids can potentially reassure the treating physician that a severe
infection is unlikely to be present. Finally, new technologies such as nanopore sequenc-
ing may enable mNGS to be performed with a turnaround time of under 6 h, greatly
increasing the window of clinically actionable results afforded by mNGS testing.

mNGS assays for infectious disease diagnosis have been developed in the CLIA
environment by specialized laboratories using approaches and guidelines similar to
those used for oncological and inherited disease NGS tests. Both published and
pending reports indicate that mNGS testing increases the diagnostic yield for infectious
diseases in patients, especially those with critical illness and/or immunocompromised
status, and may be useful for early identification of emerging pathogens relevant to
public health. Clinical mNGS assays that have been validated in CLIA-certified labora-
tories are now available for a number of infectious syndromes, including meningoen-
cephalitis, sepsis, and pneumonia. Testing of patients who are utilizing high levels of
health care resources is likely to be particularly effective, as timely identification of
atypical and/or rare infections is possible with mNGS testing. The utility of mNGS may
also extend to other applications in the future, including discrimination of causes of
infections based on transcriptome profiling (RNA sequencing) of the patient host
response, identification of antibiotic resistance genes, and rapid mNGS diagnosis within
hours on portable platforms such as the nanopore sequencer. The broad-spectrum,
direct detection capability of mNGS testing may also facilitate its use as a rule-out test
for excluding infection in patients with suspicion for noninfectious etiologies such as
autoimmune disease. With ongoing improvements in technology and eventual regu-
latory approval, costs and barriers to mNGS implementation will continue to decrease,
enabling expanded access to testing by treating physicians.

Steve Miller and Charles Chiu
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COUNTERPOINT

With great power comes great responsibility.
—Uncle Ben in Spider-Man

The power of untargeted metagenomic next-generation sequencing (mNGS) is
undeniable. As molecular technologies continue to evolve, it is tempting to adopt

them quickly in the diagnostic laboratory. In the case of mNGS, there are a number of
analytical and practical challenges that must be addressed before mNGS becomes a
widely adopted routine diagnostic test in the clinical microbiology laboratory. We think
that current limitations in test performance, a lack of standardized methods for mNGS,
and limited guidance on clinical utility make this method less useful and less accessible
than it needs to be for use in routine clinical microbiology laboratories.

The general perception, particularly among medical providers, is that mNGS is
exquisitely sensitive, such that it will yield a result when all other diagnostic test results
are negative. While mNGS is more analytically sensitive than smears or cultures, in most
cases it is not as sensitive as targeted nucleic acid amplification methods, in part due
to the vast amount of human DNA/RNA that is sequenced and removed during
computational analysis. Analytical sensitivity may also vary by pathogen (1). Additional
factors affecting mNGS sensitivity include the timing of specimen collection, specimen
stability, and source/cellularity, as well as methodological variables such as the extrac-
tion method, library preparation, and data analysis (1, 2). The current sensitivity of
mNGS prohibits the technology from becoming a frontline diagnostic test. Methods
that enable host nucleic acid depletion should offer improved sensitivity for the
agnostic detection of infectious disease etiologies (3).

The specificity of mNGS testing can be affected during every testing phase (pre-
analytical, analytical, and postanalytical), because specimens can become contami-
nated with nucleic acids from microorganisms that are not the cause of the patients’
infections. Specimens are collected in a wide range of collection devices and locations,
which introduces variables that might affect specificity, including microbial DNA found
in sterile collection devices and exogenous DNA introduced by the environment or
personnel during specimen collection. During the technical performance of mNGS,
negative controls and genome coverage controls can help identify exogenous DNA
from reagents or laboratory processes. With some Illumina platforms, sequence reads
can be assigned to the wrong index (i.e., index hopping) during the demultiplexing
process, which can lead to false-positive results if not controlled for and filtered out
during analysis (4). Additional specificity challenges arise during data analysis and
sequence alignment, including misclassification, database errors, and identification of
DNA not derived from the patient sample.

While analytical specificity can be addressed during verification and through imple-
mentation of appropriate controls, a greater concern with mNGS testing is its clinical
specificity. Is the detected sequence specific to the patient’s current disease process?
Do we understand the half-life of pathogen nucleic acids or the impact of latency, and
does this differ among hosts? How many reads (i.e., what level of positivity) are required
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to report a positive finding, and is this different for various disease processes or hosts?
It is important that results of mNGS testing be scrutinized with an understanding of the
potential for false-positive results.

There are not yet FDA-cleared or approved tests using mNGS for infectious diseases.
Therefore, each clinical laboratory must develop and validate a laboratory-developed
test (LDT) that includes extraction, library preparation, sequencing, and analysis pipe-
line. Optimization and verification of the performance of the system, across diverse
potential pathogens, present a new level of complexity, compared to targeted molec-
ular techniques. Any change to a component of the LDT must be reverified, which
makes the use of open source pipelines particularly challenging, since it is critical for
databases to remain up to date. For routine implementation, mNGS testing will need to
be in a closed system that has undergone regulatory review.

During validation, thresholds must be set for the minimum number and quality of
reads for analysis, the ratio of organism reads from the sample to reads present in the
negative control, and the number of reads required for a reportable result. Once
thresholds are established, clinical validation will likely involve testing of known
positive and/or negative patient samples. The majority of validation studies use resid-
ual, frozen specimens and not prospectively collected, fresh samples, which limits the
assessment of specimen stability and temporal variability. Unexpected results will
almost certainly be encountered and should be adjudicated by an additional method,
an endeavor that can be problematic from both cost and feasibility standpoints (1).

Result interpretation should be carefully considered during clinical validation. Unlike
traditional culture-based methods, for which decades of data and clinical correlations
have led to established procedures for interpretation, the paucity of prospective
analyses and clinical trials for mNGS testing leaves interpretation open. While the
interpretation of results may be more straightforward for normally sterile sources,
nonsterile sources pose additional challenges, such as the normal microbiome and
asymptomatic carriage. Therefore, interpretation of mNGS results in the clinical context
will likely require significant manual effort. Committee review of results (similar to a
tumor board) seems like a responsible approach, but routine laboratories may find
assembling such expertise a limiting factor.

A number of practical challenges also exist, limiting the broad implementation of
mNGS. While advancements in technology have shortened the time needed to perform
mNGS, the current turnaround time (TAT) (in-house, 2 days to 1 week; send out, 2 or
more weeks) limits routine use of mNGS testing, because results may not be available
within a clinically actionable time frame (2, 5). The achievable TAT is dependent on the
expected volume of samples. While mNGS is inherently high throughput, the necessary
number of reads per run may limit the number of samples that can be pooled. If fewer
samples are multiplexed, then the TAT and cost per test are increased. This alone may
limit the feasibility of in-house mNGS.

For any clinical laboratory running molecular assays, contamination is always a risk
and a fear. We attempt to mitigate this risk with quality control, unidirectional work-
flow, and stringent decontamination protocols. With the unbiased detection of mNGS,
the concern regarding contamination only increases. Exogenous DNA from any source,
not just that specific to the assay’s target, will appear in the sequencing data. It is likely
that laboratories will need dedicated space designed specifically for mNGS, allowing
minimal chance for contamination. Space limitations faced by many clinical laboratories
make establishing a dedicated mNGS area a challenge.

Data storage and security represent another hurdle to routine use of mNGS. Data
storage on the terabyte level has not previously been needed in clinical microbiology.
More than simply storing the data, security must be ensured, because mNGS data
contain HIPAA-protected patient information (6). This is complicated when open source
or commercially available cloud-based pipelines are used, requiring the sharing of data
with entities that are not subject to the same level of regulation as the clinical
laboratory. The cost of storing and securing the data generated, while complying with
the requirements of accrediting agencies, should not be understated.
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Finally, the future of reimbursement for diagnostic use of mNGS remains unclear. In
early 2018, CMS approved reimbursement for the use of NGS in oncology for their
patients. A number of caveats accompanied this decision, one being that only FDA-
approved/cleared testing was reimbursable, excluding LDTs. This decision, along with
recent reimbursement challenges for syndrome-based molecular panels, makes for an
uncertain future.

The power of mNGS is indisputable, providing insight into the microbial composi-
tion of a sample not previously achievable in clinical microbiology. We must work
responsibly to harness its diagnostic power for the benefit of our patients while
remaining good stewards of resources, regardless of whether mNGS is performed
in-house or at a reference laboratory. Quite simply, for broad implementation of
mNGS testing, industry partners need to develop in vitro diagnostic products for
infectious disease metagenomics. The majority of laboratories do not have the
bandwidth for mNGS test development, bioinformatics expertise, or the financial
investment needed to validate a mNGS LDT (�$100,000 in supplies for cerebrospi-
nal fluid mNGS testing) (2).

Currently, the role of mNGS is derived largely from case-level reports of retrospective
diagnosis and proof-of-principle applications. We need method comparison studies to
optimize LDTs and to normalize protocols between institutions (2, 7, 8). The develop-
ment of predictive models is needed to improve automated and integrated data
analysis, providing actionable reports for clinicians. Finally, and most importantly, we
need to establish the clinical utility of mNGS testing (9). Studies like that by Wilson et
al. demonstrate the ability of mNGS to detect a potential pathogen not otherwise found
by conventional methods, providing a diagnosis for an additional 3 to 6% of patients
(10). However, given the current cost of such assays, broad use coupled with low
expected return confers a significant financial burden per actionable result. Additional
well-designed outcome studies will help identify patient populations, clinical syn-
dromes, and specific laboratory test parameters for which mNGS is most likely to
provide additional diagnostic information. Such guidance will allow targeted use of
mNGS testing, increasing the expected utility and ensuring that the power of the
technology is used in the settings most likely to improve patient care (11).

Kyle G. Rodino and Melissa B. Miller
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SUMMARY

Points of agreement

1. Direct sequencing of clinical specimens offers the potential for unbiased, rapid
detection of pathogens that may not be viable in culture or detected by
traditional laboratory methods.

2. mNGS testing is not a replacement for conventional microbiological testing, such
as culture and serology.

3. A comprehensive validation for every organism detectable by sequencing is not
possible, requiring new strategies in which representative pathogens are in-
cluded in the validation study as proxies for all other targets.

4. Offering mNGS assays requires a significant financial investment from the labo-
ratory and will necessitate new strategies for laboratory reimbursement.

5. Contamination of mNGS assays is a significant challenge, requiring a well-
designed control strategy that evaluates contamination in all aspects of testing.

Issues to be resolved

1. Determining how pathogenic organisms can be differentiated from commensals
when using sequencing will require new approaches for laboratory consultation
with clinicians.

2. Cost-effectiveness and guidelines on when to perform mNGS need to be devel-
oped.

3. Regulatory hurdles and lack of insurance reimbursement make implementation
of mNGS testing difficult.

Nathan A. Ledeboer, Editor, Journal of Clinical Microbiology
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